- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Nguyen, Phuc (2)
-
Vora, Neel (2)
-
Aziz, Abdul (1)
-
Ding, Kan (1)
-
Harvey, Jay (1)
-
Lehnen, Jaime (1)
-
Liu, Jian (1)
-
Pham, Nhat (1)
-
Reynolds, Cody (1)
-
Venkatesh, Pooja (1)
-
Vu, Tam (1)
-
Wu, Yi (1)
-
Yao, Zhuoran (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Epilepsy is one of the most common neurological diseases globally (around 50M people globally). Fortunately, up to 70% of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The current gold standard, video-EEG (v-EEG), involves attaching over 20 electrodes to the scalp, is costly, requires hospitalization, trained professionals, and is uncomfortable for patients. To address this gap, we developedEarSD, a lightweight and unobtrusive ear-worn system to detect seizure onsets by measuring physiological signals behind the ears. This system can be integrated into earphones, headphones, or hearing aids, providing a convenient solution for continuous monitoring.EarSDis an integrated custom-builtsensing-computing-communicationear-worn platform to capture seizure signals, remove the noises caused by motion artifacts and environmental impacts, and stream the collected data wirelessly to the computer/mobile phone nearby.EarSD’s ML algorithm, running on a server, identifies seizure-associated signatures and detects onset events. We evaluated the proposed system in both in-lab and in-hospital experiments at the University of Texas Southwestern Medical Center with epileptic seizure patients, confirming its usability and practicality.more » « lessFree, publicly-accessible full text available January 31, 2026
-
Vora, Neel; Wu, Yi; Liu, Jian; Nguyen, Phuc (, The Ninth Workshop on Micro Aerial Vehicle Networks, Systems, and Applications)
An official website of the United States government
